Sains Malaysiana 53(1)(2024): 201-215
http://doi.org/10.17576/jsm-2024-5301-16
Stability and Safety Analysis of
Statin-Loaded Nano-films for the Treatment of Diabetic Wound
(Analisis Kestabilan dan Keselamatan Filem Nano Sarat
Statin untuk Rawatan Luka Diabetes)
MARIA RASOOL1, NAWAF M. ALOTAIBI2, MUHAMMAD SARFRAZ3 & MUHAMMAD IRFAN SIDDIQUE4,*
1Institute of Pharmaceutical Sciences, Faculty of Biosciences, University
of Veterinary and Animal Sciences, Lahore
2Department of clinical Pharmacy, Faculty of Pharmacy, Northern Border
University, Rafha, Saudi Arabia
3College of Pharmacy, Al Ain University, Al Ain, postal
code 64141. UAE
4Department of Pharmaceutical Sciences, Faculty of Pharmacy, Northern
Border University, Rafha, Saudi Arabia
Received: 2 October 2023/Accepted: 2 January 2024
Abstract
Diabetes
mellitus (DM) is a metabolic disease that delays the regular stages of the
wound's healing process due to delayed inflammatory stages. Due to foot pressure points, chronic foot wounds are
ultimately considered the primary cause of lower leg amputation. Diabetic
patients have vascular dysfunction and neuropathy, leading to inadequate oxygen
supply to the wound area. Statins have a crucial role in the regulation of
angiogenesis that could increase vascular endothelial growth factor (VEGF)
synthesis. By offering a localized treatment approach while minimizing systemic
side effects associated with oral medication, this study aimed to develop statin-loaded nanofilms to determine their stability and safety
among healthy individuals as a potential procedure for diabetic wound healing.
Simvastatin (SIM) loaded nanofilms formulations (F1-F10) were prepared using the solvent casting
method. The formulation was optimized based on tests
such as physical appearance, tensile strength, microscopic photographs,
morphology, and drug content uniformity. ICH
guidelines were followed to determine various parameters (physical appearances, tensile strength,
microscopic photographs, morphology, and drug content uniformity) for six-month stability study at three different
storage conditions. Safety analysis of the nanofilms was performed on
healthy human skin using the Draize skin irritation test. Results showed F7 formulation was considered an
optimized formulation as well as stable through the storage period at 4 ± 2°C,
25 ± 2°C, and 40 ± 2 °C. Furthermore, Primary Irritation Index results (PII was 0 showed no
irritation in case and control groups) indicate its safety and biocompatibility
to skin. Thus, the optimized statin-loaded nanofilm is stable, safe, and
non-toxic, which may be used as a potential diabetic wound healing agent.
Keywords:
Nanoparticles; polymeric drug carrier; safety analysis; targeted drug delivery;
wound healing
Abstrak
Diabetes mellitus (DM) adalah penyakit
metabolik yang melambatkan peringkat biasa proses penyembuhan luka disebabkan
oleh tahap keradangan yang tertangguh. Disebabkan oleh titik tekanan kaki, luka kaki kronik akhirnya dianggap
sebagai punca utama amputasi kaki bawah. Pesakit diabetes mempunyai disfungsi vaskular dan neuropati yang membawa
kepada bekalan oksigen yang tidak mencukupi ke kawasan luka. Statin mempunyai peranan penting dalam pengawalan angiogenesis yang boleh
meningkatkan sintesis faktor pertumbuhan endotelium vaskular (VEGF). Dengan menawarkan pendekatan rawatan setempat sambil meminimumkan kesan
sampingan sistemik yang berkaitan dengan ubat oral, kajian ini bertujuan untuk
membangunkan nanofilem yang dimuatkan statin untuk menentukan kestabilan dan
keselamatan mereka dalam kalangan individu yang sihat sebagai prosedur yang
berpotensi untuk penyembuhan luka diabetes. Formulasi nanofilem yang dimuatkan simvastatin (SIM) (F1-F10) telah
disediakan menggunakan kaedah tuangan pelarut. Formulasi dioptimumkan berdasarkan ujian seperti penampilan fizikal,
kekuatan tegangan, gambar mikroskopik, morfologi dan keseragaman kandungan
ubat. Garis panduan ICH diikuti untuk menentukan pelbagai
parameter (penampilan fizikal, kekuatan tegangan, gambar mikroskopik,
morfologi, dan keseragaman kandungan ubat) untuk kajian kestabilan enam bulan
pada tiga keadaan penyimpanan yang berbeza. Analisis keselamatan nanofilem telah dilakukan pada kulit manusia yang
sihat menggunakan ujian kerengsaan kulit Draize. Keputusan menunjukkan formulasi F7 dianggap sebagai rumusan yang
dioptimumkan serta stabil melalui tempoh penyimpanan pada 4 ± 2 °C, 25 ± 2 °C
dan 40 ± 2 °C. Tambahan pula, keputusan Indeks Kerengsaan Utama (PII
ialah 0 menunjukkan tiada kerengsaan dalam kes dan kumpulan kawalan)
menunjukkan keselamatan dan biokeserasiannya kepada kulit. Oleh itu, nanofilem dimuatkan statin yang dioptimumkan adalah stabil,
selamat dan tidak toksik yang boleh digunakan sebagai agen penyembuhan luka
diabetes yang berpotensi.
Kata kunci: Analisis keselamatan; nanozarah; pembawa dadah polimer; penghantaran dadah
yang disasarkan; penyembuhan luka
REFERENCES
Afshar, M., Dini, G., Vaezifar, S., Mehdikhani, M.
& Movahedi, B. 2020. Preparation and characterization of sodium
alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan
nanoparticles as a drug delivery system. Journal of Drug Delivery Science
and Technology 56: 101530.
Algharib, S.A., Dawood, A., Zhou, K., Chen, D., Li,
C., Meng, K., Zhang, A., Luo, W., Ahmed S. & Huang, L. 2022. Preparation of
chitosan nanoparticles by ionotropic gelation technique: Effects of formulation
parameters and in vitro characterization. Journal of Molecular
Structure 1252: 132129.
Aly, U.F., Abou-Taleb, H.A., Abdellatif, A.A. &
Tolba, N.S. 2019. Formulation and evaluation of simvastatin polymeric
nanoparticles loaded in hydrogel for optimum wound healing purpose. Drug
Design, Development and Therapy 13:
1567.
Azevedo, M.A., Bourbon, A.I., Vicente, A.A. &
Cerqueira, M.A. 2014. Alginate/chitosan nanoparticles for encapsulation and
controlled release of vitamin B2. International Journal of Biological
Macromolecules 71: 141-146.
Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez,
G., Merinero, M., Argüelles-Arias, F. & Alcudia, A. 2020. Polymeric
nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 10(7): 1403.
Bibi, M., ud Din, F., Anwar, Y., Alkenani, N.A., Zari,
A.T., Mukhtiar, M., Abu Zeid, I.M., Althubaiti, E.H., Nazish, H., Zeb, A., Ullah,
I., Khan, G.M. & Choi, H.G. 2022. Cilostazol-loaded solid lipid
nanoparticles: Bioavailability and safety evaluation in an animal model. Journal
of Drug Delivery Science and Technology 74: 103581.
Bolton, L.L. 2016. Quality randomized clinical trials
of topical diabetic foot ulcer healing agents. Advances in Wound Care 5(3): 137-147.
Cai, M., Wang, Y., Wang, R., Li, M., Zhang, W., Yu, J.
& Hua, R. 2022. Antibacterial and antibiofilm activities of chitosan
nanoparticles loaded with Ocimum basilicum L. essential oil. International
Journal of Biological Macromolecules 202: 122-129.
Calvo, P., Remuñan-López, C., Vila-Jato, J.L. &
Alonso, M.J. 1997. Chitosan and chitosan/ethylene oxide-propylene oxide block
copolymer nanoparticles as novel carriers for proteins and vaccines. Pharmaceutical
Research 14: 1431-1436.
Chandra Hembram, K., Prabha, S., Chandra, R., Ahmed,
B. & Nimesh, S. 2016. Advances in preparation and characterization of
chitosan nanoparticles for therapeutics. Artificial Cells, Nanomedicine, and
Biotechnology 44(1):
305-314.
Chandrasekaran, R., Krishnan, M., Bupesh, G., Chacko,
S., Gawade, O., Hasan, S., George, E., Vijayakumar, T.S., Sundaram, M. &
Sagadevan, S. 2023. Prospective features of functional 2D nanomaterial graphene
oxide in the wound healing process. Journal of Drug Delivery Science and
Technology 82: 104352.
Daliri, M., Johnston, T.P. & Sahebkar, A. 2023.
Statins and peripheral neuropathy in diabetic and non-diabetic cases: A
systematic review. Journal of Pharmacy and Pharmacology 75(5): 593-611.
Das, S., Anu, K., Birangal, S.R., Nikam, A.N., Pandey,
A., Mutalik, S. & Joseph, A. 2020. Role of comorbidities like diabetes on
severe acute respiratory syndrome coronavirus-2: A review. Life Sciences 258: 118202.
DCruz, C.E.M., Bhide, P.J., Kumar, L. & Shirodkar,
R.K. 2022. Novel nano spanlastic carrier system for buccal delivery of
lacidipine. Journal of Drug Delivery Science and Technology 68: 103061.
Ebhodaghe, S.O. 2022. A short review on chitosan and
gelatin-based hydrogel composite polymers for wound healing. Journal of
Biomaterials Science, Polymer Edition 33(12): 1595-1622.
Favela-Camacho, S.E., Samaniego-Benítez, E.J.,
Godínez-García, A., Avilés-Arellano, L.M. & Pérez-Robles, J.F. 2019. How to
decrease the agglomeration of magnetite nanoparticles and increase their
stability using surface properties. Colloids and Surfaces A: Physicochemical
and Engineering Aspects 574:
29-35.
Gayathri, K., Bhaskaran, M., Selvam, C. &
Thilagavathi, R. 2023. Nano formulation approaches for curcumin delivery - A
review. Journal of Drug Delivery Science and Technology 82: 104326.
Golkar, N., Sarikhani, Z., Aghaei, R., Heidari, R.,
Amini, A. & Gholami, A. 2023. An oral nanoformulation of insulin:
Development and characterization of human insulin loaded graphene oxide-sodium
alginate-gold nanocomposite in an animal model. Journal of Drug Delivery
Science and Technology 82: 104309.
González-González, O., Ramirez, I.O., Ramirez, B.I.,
O’Connell, P., Ballesteros, M.P., Torrado, J.J. & Serrano, D.R. 2022. Drug
stability: ICH versus accelerated predictive stability studies. Pharmaceutics 14(11): 2324.
Guo, S., Liang, Y., Liu, L., Yin, M., Wang, A., Sun,
K., Li, Y. & Shi, Y. 2021. Research on the fate of polymeric nanoparticles
in the process of the intestinal absorption based on model nanoparticles with
various characteristics: Size, surface charge and pro-hydrophobics. Journal
of Nanobiotechnology 19: 32.
Gupta, J., Quadros, M. & Momin, M. 2023.
Mesoporous silica nanoparticles: Synthesis and multifaceted functionalization
for controlled drug delivery. Journal of Drug Delivery Science and
Technology 81: 104305.
Hardwick, R.N., Betts, C.J., Whritenour, J., Sura, R.,
Thamsen, M., Kaufman, E.H. & Fabre, K. 2020. Drug-induced skin toxicity:
Gaps in preclinical testing cascade as opportunities for complex in vitro models and assays. Lab on a Chip 20(2):
199-214.
Hoang, N.H., Le Thanh, T., Sangpueak, R., Treekoon, J.,
Saengchan, C., Thepbandit, W., Papathoti, N.K., Kamkaew, A. & Buensanteai,
N. 2022. Chitosan nanoparticles-based ionic gelation method: A promising
candidate for plant disease management. Polymers 14(4): 662.
Jain, A.K., Jain, S., Abourehab, M.A., Mehta, P. &
Kesharwani, P. 2022. An insight on topically applied formulations for
management of various skin disorders. Journal of Biomaterials Science,
Polymer Edition 33(18):
2406-2432.
Karki, S., Kim, H., Na, S-J., Shin, D., Jo, K. &
Lee, J. 2016. Thin films as an emerging platform for drug delivery. Asian
Journal of Pharmaceutical Sciences 11(5):
559-574.
Kittaneh, M., Qurt, M., Malkieh, N., Naseef, H. &
Muqedi, R. 2023. Preparation and evaluation of vitamin D3 supplementation as
transdermal film-forming solution. Pharmaceutics 15(1): 39.
Leonetti, B., Perin, A., Ambrosi, E.K., Sponchia, G.,
Sgarbossa, P., Castellin, A., Riello, P. & Scarso, A. 2021. Mesoporous
zirconia nanoparticles as drug delivery systems: Drug loading, stability and
release. Journal of Drug Delivery Science and Technology 61: 102189.
Li, W., Yu, Y., Huang, R., Wang, X., Lai, P., Chen,
K., Shang, L. & Zhao, Y. 2023. Multi‐bioinspired functional
conductive hydrogel patches for wound healing management. Advanced Science 10(25): 2301479.
Madawi, E.A., Al Jayoush, A.R., Rawas-Qalaji, M., Thu,
H.E., Khan, S., Sohail, M., Mahmood, A. & Hussain, Z. 2023. Polymeric
nanoparticles as tunable nanocarriers for targeted delivery of drugs to skin
tissues for treatment of topical skin diseases. Pharmaceutics 15(2): 657.
Mahmood, T. & Akhtar, N. 2013. Short term study of
human skin irritation by single application closed patch test: Assessment of
four multiple emulsion formulations loaded with botanical extracts. Cutaneous
and Ocular Toxicology 32(1):
35-40.
Monteiro‐Soares, M., Boyko, E.J., Jeffcoate, W.,
Mills, J.L., Russell, D., Morbach, S. & Game, F. 2020. Diabetic foot ulcer
classifications: A critical review. Diabetes/Metabolism Research and Reviews 36(Suppl. 1): e3272.
Naderi, N., Karponis, D., Mosahebi, A. &
Seifalian, A.M. 2018. Nanoparticles in wound healing; from hope to promise,
from promise to routine. Front. Biosci. 23: 1038-1059.
Penton, A., Langert, K.A., Maier, K. & Gahtan, V.
2023. Beyond cholesterol reduction-statin pleiotropy and peripheral arterial
disease. Statins-From Lipid-Lowering Benefits to Pleiotropic Effects,
IntechOpen.
Ramzan, M., Kaur, G., Trehan, S. Agrewala, J.N.,
Michniak-Kohn, B.B., Hussain, A., Mahdi, W.A., Gulati, J.S. & Kaur, I.P.
2021. Mechanistic evaluations of ketoconazole lipidic nanoparticles for
improved efficacy, enhanced topical penetration, cellular uptake (L929 and
J774A. 1), and safety assessment: In vitro and in vivo studies. Journal
of Drug Delivery Science and Technology 65: 102743.
Rastogi, A., Goyal, G., Kesavan, R., Bal, A., Kumar,
H., Kamath, P., Jude, E.B., Armstrong, D.G. & Bhansali, A. 2020. Long term
outcomes after incident diabetic foot ulcer: Multicenter large cohort
prospective study (EDI-FOCUS investigators) epidemiology of diabetic foot
complications study: Epidemiology of diabetic foot complications study. Diabetes
Research and Clinical Practice 162:
108113.
Raval, N., Maheshwari, R., Kalyane, D.,
Youngren-Ortiz, S.R., Chougule, M.B. & Tekade, R.K. 2019. Importance of
physicochemical characterization of nanoparticles in pharmaceutical product
development. In Basic Fundamentals of Drug Delivery, edited by Tekade,
R.K. Massachusetts: Academic Press. pp. 369-400.
Ruan, J., Liu, C., Wang, J., Zhong, T., Quan, P. &
Fang, L. 2022. Efficacy and safety of permeation enhancers: A kinetic
evaluation approach and molecular mechanism study in the skin. International
Journal of Pharmaceutics 626:
122155.
Sahu, T., Ratre, Y.K., Chauhan, S., Bhaskar, L., Nair,
M.P. & Verma, H.K. 2021. Nanotechnology based drug delivery system: Current
strategies and emerging therapeutic potential for medical science. Journal
of Drug Delivery Science and Technology 63: 102487.
Saleh, T.A., Shetti, N.P., Shanbhag, M.M., Reddy, K.R.
& Aminabhavi, T.M. 2020. Recent trends in functionalized nanoparticles
loaded polymeric composites: An energy application. Materials Science for
Energy Technologies 3:
515-525.
Sameh, N., Aly, U., Abou-Taleb, H. & Abdellatif,
A. 2018. Prospective role of simvastatin on wound healing: Review of the
literature. J. Bioequiv. Bioavailab. 10(2): 36-42.
Schoenmaker, L., Witzigmann, D., Kulkarni, J.A.,
Verbeke, R., Kersten, G., Jiskoot, W. & Crommelin, D.J. 2021. mRNA-lipid
nanoparticle COVID-19 vaccines: Structure and stability. International
Journal of Pharmaceutics 601:
120586.
Sharma, S., Schaper, N. & Rayman, G. 2020.
Microangiopathy: Is it relevant to wound healing in diabetic foot disease? Diabetes/Metabolism
Research and Reviews 36:
e3244.
Singh, R.P., Singh, J.P., Pal, A. & Kaur, T. 2020.
Encapsulation of vancomycin in copper doped hydroxyapatite mesoporous
nanoparticles of different morphologies. Journal of Drug Delivery Science
and Technology 55: 101441.
Sinha, S., Garg, V., Singh, R.P. & Dutt, R. 2021.
Chitosan-alginate core-shell-corona shaped nanoparticles of dimethyl fumarate
in orodispersible film to improve bioavailability in treatment of multiple
sclerosis: Preparation, characterization and biodistribution in rats. Journal
of Drug Delivery Science and Technology 64: 102645.
Ta, Q., Ting, J., Harwood, S., Browning, N., Simm, A.,
Ross, K., Olier, I. & Al-Kassas, R. 2021. Chitosan nanoparticles for
enhancing drugs and cosmetic components penetration through the skin. European
Journal of Pharmaceutical Sciences 160:
105765.
Tiwari, N., Kumar, D., Priyadarshani, A., Jain, G.K.,
Mittal, G., Kesharwani, P. & Aggarwal, G. 2023. Recent progress in
polymeric biomaterials and their potential applications in skin regeneration
and wound care management. Journal of Drug Delivery Science and Technology 82: 104319.
Tiwari, R. & Pathak, K. 2023. Local drug delivery
strategies towards wound healing. Pharmaceutics 15(2): 634.
Tufail, S., Siddique, M.I., Sarfraz, M., Sohail, M.F.,
Shahid, M.N., Omer, M.O., Katas, H. & Rasool, F. 2022. Simvastatin
nanoparticles loaded polymeric film as a potential strategy for diabetic wound
healing: In vitro and in vivo evaluation. Current Drug
Delivery 19(5): 534-546.
Wadher, K.J., Kubde, C.J., Malkote, S.D., Thakre,
M.S., Shelote, C.J. & Umekar, M.J. 2023. Formulation and characterization
of montelukast sodium mouth dissolving film using cress seed mucilage. Journal
of Drug Delivery and Therapeutics 13(2):
16-20.
Wang, H., Gong, X., Miao, Y., Guo, X., Liu, C., Fan,
Y-Y., Zhang, J., Niu, B. & Li, W. 2019. Preparation and characterization of
multilayer films composed of chitosan, sodium alginate and carboxymethyl
chitosan-ZnO nanoparticles. Food Chemistry 283: 397-403.
Wang, Y., Chen, G., Zhang, H., Zhao, C., Sun, L. &
Zhao, Y. 2021. Emerging functional biomaterials as medical patches. ACS Nano 15(4): 5977-6007.
Xi, H., Cun, D., Xiang, R., Guan, Y., Zhang, Y., Li,
Y. & Fang, L. 2013. Intra-articular drug delivery from an optimized topical
patch containing teriflunomide and lornoxicam for rheumatoid arthritis
treatment: Does the topical patch really enhance a local treatment? Journal
of Controlled Release 169(1-2):
73-81.
Yao, Y., Sun, Z., Li, X., Tang, Z., Li, X., Morrell,
J.J., Liu, Y., Li, C. & Luo, Z. 2022. Effects of raw material source on the
properties of CMC composite films. Polymers 14(1): 32.
Yazdanpanah, L., Nasiri, M. & Adarvishi, S. 2015.
Literature review on the management of diabetic foot ulcer. World Journal of
Diabetes 6(1): 37.
Yong, D.O.C., Saker, S.R., Wadhwa, R., Chellappan,
D.K., Madheswaran, T., Panneerselvam, J., Tambuwala, M.M., Bakshi, H.A., Kumar,
P. & Pillay, V. 2019. Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment
of asthma. Journal of Drug Delivery Science and Technology 54: 101297.
*Corresponding author; email: muhammad.siddique@nbu.edu.sa
|