Sains Malaysiana 53(1)(2024): 201-215

http://doi.org/10.17576/jsm-2024-5301-16

 

Stability and Safety Analysis of Statin-Loaded Nano-films for the Treatment of Diabetic Wound

(Analisis Kestabilan dan Keselamatan Filem Nano Sarat Statin untuk Rawatan Luka Diabetes)

 

MARIA RASOOL1, NAWAF M. ALOTAIBI2, MUHAMMAD SARFRAZ3 & MUHAMMAD IRFAN SIDDIQUE4,*

 

1Institute of Pharmaceutical Sciences, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore

2Department of clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia

3College of Pharmacy, Al Ain University, Al Ain, postal code 64141. UAE

4Department of Pharmaceutical Sciences, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia

 

Received: 2 October 2023/Accepted: 2 January 2024

 

Abstract

Diabetes mellitus (DM) is a metabolic disease that delays the regular stages of the wound's healing process due to delayed inflammatory stages. Due to foot pressure points, chronic foot wounds are ultimately considered the primary cause of lower leg amputation. Diabetic patients have vascular dysfunction and neuropathy, leading to inadequate oxygen supply to the wound area. Statins have a crucial role in the regulation of angiogenesis that could increase vascular endothelial growth factor (VEGF) synthesis. By offering a localized treatment approach while minimizing systemic side effects associated with oral medication, this study aimed to develop statin-loaded nanofilms to determine their stability and safety among healthy individuals as a potential procedure for diabetic wound healing. Simvastatin (SIM) loaded nanofilms formulations (F1-F10) were prepared using the solvent casting method. The formulation was optimized based on tests such as physical appearance, tensile strength, microscopic photographs, morphology, and drug content uniformity. ICH guidelines were followed to determine various parameters (physical appearances, tensile strength, microscopic photographs, morphology, and drug content uniformity) for six-month stability study at three different storage conditions. Safety analysis of the nanofilms was performed on healthy human skin using the Draize skin irritation test. Results showed F7 formulation was considered an optimized formulation as well as stable through the storage period at 4 ± 2°C, 25 ± 2°C, and 40 ± 2 °C. Furthermore, Primary Irritation Index results (PII was 0 showed no irritation in case and control groups) indicate its safety and biocompatibility to skin. Thus, the optimized statin-loaded nanofilm is stable, safe, and non-toxic, which may be used as a potential diabetic wound healing agent.

 

Keywords: Nanoparticles; polymeric drug carrier; safety analysis; targeted drug delivery; wound healing

 

Abstrak

Diabetes mellitus (DM) adalah penyakit metabolik yang melambatkan peringkat biasa proses penyembuhan luka disebabkan oleh tahap keradangan yang tertangguh. Disebabkan oleh titik tekanan kaki, luka kaki kronik akhirnya dianggap sebagai punca utama amputasi kaki bawah. Pesakit diabetes mempunyai disfungsi vaskular dan neuropati yang membawa kepada bekalan oksigen yang tidak mencukupi ke kawasan luka. Statin mempunyai peranan penting dalam pengawalan angiogenesis yang boleh meningkatkan sintesis faktor pertumbuhan endotelium vaskular (VEGF). Dengan menawarkan pendekatan rawatan setempat sambil meminimumkan kesan sampingan sistemik yang berkaitan dengan ubat oral, kajian ini bertujuan untuk membangunkan nanofilem yang dimuatkan statin untuk menentukan kestabilan dan keselamatan mereka dalam kalangan individu yang sihat sebagai prosedur yang berpotensi untuk penyembuhan luka diabetes. Formulasi nanofilem yang dimuatkan simvastatin (SIM) (F1-F10) telah disediakan menggunakan kaedah tuangan pelarut. Formulasi dioptimumkan berdasarkan ujian seperti penampilan fizikal, kekuatan tegangan, gambar mikroskopik, morfologi dan keseragaman kandungan ubat. Garis panduan ICH diikuti untuk menentukan pelbagai parameter (penampilan fizikal, kekuatan tegangan, gambar mikroskopik, morfologi, dan keseragaman kandungan ubat) untuk kajian kestabilan enam bulan pada tiga keadaan penyimpanan yang berbeza. Analisis keselamatan nanofilem telah dilakukan pada kulit manusia yang sihat menggunakan ujian kerengsaan kulit Draize. Keputusan menunjukkan formulasi F7 dianggap sebagai rumusan yang dioptimumkan serta stabil melalui tempoh penyimpanan pada 4 ± 2 °C, 25 ± 2 °C dan 40 ± 2 °C. Tambahan pula, keputusan Indeks Kerengsaan Utama (PII ialah 0 menunjukkan tiada kerengsaan dalam kes dan kumpulan kawalan) menunjukkan keselamatan dan biokeserasiannya kepada kulit. Oleh itu, nanofilem dimuatkan statin yang dioptimumkan adalah stabil, selamat dan tidak toksik yang boleh digunakan sebagai agen penyembuhan luka diabetes yang berpotensi.

 

Kata kunci: Analisis keselamatan; nanozarah; pembawa dadah polimer; penghantaran dadah yang disasarkan; penyembuhan luka

 

REFERENCES

Afshar, M., Dini, G., Vaezifar, S., Mehdikhani, M. & Movahedi, B. 2020. Preparation and characterization of sodium alginate/polyvinyl alcohol hydrogel containing drug-loaded chitosan nanoparticles as a drug delivery system. Journal of Drug Delivery Science and Technology 56: 101530.

Algharib, S.A., Dawood, A., Zhou, K., Chen, D., Li, C., Meng, K., Zhang, A., Luo, W., Ahmed S. & Huang, L. 2022. Preparation of chitosan nanoparticles by ionotropic gelation technique: Effects of formulation parameters and in vitro characterization. Journal of Molecular Structure 1252: 132129.

Aly, U.F., Abou-Taleb, H.A., Abdellatif, A.A. & Tolba, N.S. 2019. Formulation and evaluation of simvastatin polymeric nanoparticles loaded in hydrogel for optimum wound healing purpose. Drug Design, Development and Therapy 13: 1567.

Azevedo, M.A., Bourbon, A.I., Vicente, A.A. & Cerqueira, M.A. 2014. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. International Journal of Biological Macromolecules 71: 141-146.

Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F. & Alcudia, A. 2020. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 10(7): 1403.

Bibi, M., ud Din, F., Anwar, Y., Alkenani, N.A., Zari, A.T., Mukhtiar, M., Abu Zeid, I.M., Althubaiti, E.H., Nazish, H., Zeb, A., Ullah, I., Khan, G.M. & Choi, H.G. 2022. Cilostazol-loaded solid lipid nanoparticles: Bioavailability and safety evaluation in an animal model. Journal of Drug Delivery Science and Technology 74: 103581.

Bolton, L.L. 2016. Quality randomized clinical trials of topical diabetic foot ulcer healing agents. Advances in Wound Care 5(3): 137-147.

Cai, M., Wang, Y., Wang, R., Li, M., Zhang, W., Yu, J. & Hua, R. 2022. Antibacterial and antibiofilm activities of chitosan nanoparticles loaded with Ocimum basilicum L. essential oil. International Journal of Biological Macromolecules 202: 122-129.

Calvo, P., Remuñan-López, C., Vila-Jato, J.L. & Alonso, M.J. 1997. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharmaceutical Research 14: 1431-1436.

Chandra Hembram, K., Prabha, S., Chandra, R., Ahmed, B. & Nimesh, S. 2016. Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artificial Cells, Nanomedicine, and Biotechnology 44(1): 305-314.

Chandrasekaran, R., Krishnan, M., Bupesh, G., Chacko, S., Gawade, O., Hasan, S., George, E., Vijayakumar, T.S., Sundaram, M. & Sagadevan, S. 2023. Prospective features of functional 2D nanomaterial graphene oxide in the wound healing process. Journal of Drug Delivery Science and Technology 82: 104352.

Daliri, M., Johnston, T.P. & Sahebkar, A. 2023. Statins and peripheral neuropathy in diabetic and non-diabetic cases: A systematic review. Journal of Pharmacy and Pharmacology 75(5): 593-611.

Das, S., Anu, K., Birangal, S.R., Nikam, A.N., Pandey, A., Mutalik, S. & Joseph, A. 2020. Role of comorbidities like diabetes on severe acute respiratory syndrome coronavirus-2: A review. Life Sciences 258: 118202.

DCruz, C.E.M., Bhide, P.J., Kumar, L. & Shirodkar, R.K. 2022. Novel nano spanlastic carrier system for buccal delivery of lacidipine. Journal of Drug Delivery Science and Technology 68: 103061.

Ebhodaghe, S.O. 2022. A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing. Journal of Biomaterials Science, Polymer Edition 33(12): 1595-1622.

Favela-Camacho, S.E., Samaniego-Benítez, E.J., Godínez-García, A., Avilés-Arellano, L.M. & Pérez-Robles, J.F. 2019. How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 574: 29-35.

Gayathri, K., Bhaskaran, M., Selvam, C. & Thilagavathi, R. 2023. Nano formulation approaches for curcumin delivery - A review. Journal of Drug Delivery Science and Technology 82: 104326.

Golkar, N., Sarikhani, Z., Aghaei, R., Heidari, R., Amini, A. & Gholami, A. 2023. An oral nanoformulation of insulin: Development and characterization of human insulin loaded graphene oxide-sodium alginate-gold nanocomposite in an animal model. Journal of Drug Delivery Science and Technology 82: 104309.

González-González, O., Ramirez, I.O., Ramirez, B.I., O’Connell, P., Ballesteros, M.P., Torrado, J.J. & Serrano, D.R. 2022. Drug stability: ICH versus accelerated predictive stability studies. Pharmaceutics 14(11): 2324.

Guo, S., Liang, Y., Liu, L., Yin, M., Wang, A., Sun, K., Li, Y. & Shi, Y. 2021. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: Size, surface charge and pro-hydrophobics. Journal of Nanobiotechnology 19: 32.

Gupta, J., Quadros, M. & Momin, M. 2023. Mesoporous silica nanoparticles: Synthesis and multifaceted functionalization for controlled drug delivery. Journal of Drug Delivery Science and Technology 81: 104305.

Hardwick, R.N., Betts, C.J., Whritenour, J., Sura, R., Thamsen, M., Kaufman, E.H. & Fabre, K. 2020. Drug-induced skin toxicity: Gaps in preclinical testing cascade as opportunities for complex in vitro models and assays. Lab on a Chip 20(2): 199-214.

Hoang, N.H., Le Thanh, T., Sangpueak, R., Treekoon, J., Saengchan, C., Thepbandit, W., Papathoti, N.K., Kamkaew, A. & Buensanteai, N. 2022. Chitosan nanoparticles-based ionic gelation method: A promising candidate for plant disease management. Polymers 14(4): 662.

Jain, A.K., Jain, S., Abourehab, M.A., Mehta, P. & Kesharwani, P. 2022. An insight on topically applied formulations for management of various skin disorders. Journal of Biomaterials Science, Polymer Edition 33(18): 2406-2432.

Karki, S., Kim, H., Na, S-J., Shin, D., Jo, K. & Lee, J. 2016. Thin films as an emerging platform for drug delivery. Asian Journal of Pharmaceutical Sciences 11(5): 559-574.

Kittaneh, M., Qurt, M., Malkieh, N., Naseef, H. & Muqedi, R. 2023. Preparation and evaluation of vitamin D3 supplementation as transdermal film-forming solution. Pharmaceutics 15(1): 39.

Leonetti, B., Perin, A., Ambrosi, E.K., Sponchia, G., Sgarbossa, P., Castellin, A., Riello, P. & Scarso, A. 2021. Mesoporous zirconia nanoparticles as drug delivery systems: Drug loading, stability and release. Journal of Drug Delivery Science and Technology 61: 102189.

Li, W., Yu, Y., Huang, R., Wang, X., Lai, P., Chen, K., Shang, L. & Zhao, Y. 2023. Multi‐bioinspired functional conductive hydrogel patches for wound healing management. Advanced Science 10(25): 2301479.

Madawi, E.A., Al Jayoush, A.R., Rawas-Qalaji, M., Thu, H.E., Khan, S., Sohail, M., Mahmood, A. & Hussain, Z. 2023. Polymeric nanoparticles as tunable nanocarriers for targeted delivery of drugs to skin tissues for treatment of topical skin diseases. Pharmaceutics 15(2): 657.

Mahmood, T. & Akhtar, N. 2013. Short term study of human skin irritation by single application closed patch test: Assessment of four multiple emulsion formulations loaded with botanical extracts. Cutaneous and Ocular Toxicology 32(1): 35-40.

Monteiro‐Soares, M., Boyko, E.J., Jeffcoate, W., Mills, J.L., Russell, D., Morbach, S. & Game, F. 2020. Diabetic foot ulcer classifications: A critical review. Diabetes/Metabolism Research and Reviews 36(Suppl. 1): e3272.

Naderi, N., Karponis, D., Mosahebi, A. & Seifalian, A.M. 2018. Nanoparticles in wound healing; from hope to promise, from promise to routine. Front. Biosci. 23: 1038-1059.

Penton, A., Langert, K.A., Maier, K. & Gahtan, V. 2023. Beyond cholesterol reduction-statin pleiotropy and peripheral arterial disease. Statins-From Lipid-Lowering Benefits to Pleiotropic Effects, IntechOpen.

Ramzan, M., Kaur, G., Trehan, S. Agrewala, J.N., Michniak-Kohn, B.B., Hussain, A., Mahdi, W.A., Gulati, J.S. & Kaur, I.P. 2021. Mechanistic evaluations of ketoconazole lipidic nanoparticles for improved efficacy, enhanced topical penetration, cellular uptake (L929 and J774A. 1), and safety assessment: In vitro and in vivo studies. Journal of Drug Delivery Science and Technology 65: 102743.

Rastogi, A., Goyal, G., Kesavan, R., Bal, A., Kumar, H., Kamath, P., Jude, E.B., Armstrong, D.G. & Bhansali, A. 2020. Long term outcomes after incident diabetic foot ulcer: Multicenter large cohort prospective study (EDI-FOCUS investigators) epidemiology of diabetic foot complications study: Epidemiology of diabetic foot complications study. Diabetes Research and Clinical Practice 162: 108113.

Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S.R., Chougule, M.B. & Tekade, R.K. 2019. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic Fundamentals of Drug Delivery, edited by Tekade, R.K. Massachusetts: Academic Press. pp. 369-400.

Ruan, J., Liu, C., Wang, J., Zhong, T., Quan, P. & Fang, L. 2022. Efficacy and safety of permeation enhancers: A kinetic evaluation approach and molecular mechanism study in the skin. International Journal of Pharmaceutics 626: 122155.

Sahu, T., Ratre, Y.K., Chauhan, S., Bhaskar, L., Nair, M.P. & Verma, H.K. 2021. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology 63: 102487.

Saleh, T.A., Shetti, N.P., Shanbhag, M.M., Reddy, K.R. & Aminabhavi, T.M. 2020. Recent trends in functionalized nanoparticles loaded polymeric composites: An energy application. Materials Science for Energy Technologies 3: 515-525.

Sameh, N., Aly, U., Abou-Taleb, H. & Abdellatif, A. 2018. Prospective role of simvastatin on wound healing: Review of the literature. J. Bioequiv. Bioavailab. 10(2): 36-42.

Schoenmaker, L., Witzigmann, D., Kulkarni, J.A., Verbeke, R., Kersten, G., Jiskoot, W. & Crommelin, D.J. 2021. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. International Journal of Pharmaceutics 601: 120586.

Sharma, S., Schaper, N. & Rayman, G. 2020. Microangiopathy: Is it relevant to wound healing in diabetic foot disease? Diabetes/Metabolism Research and Reviews 36: e3244.

Singh, R.P., Singh, J.P., Pal, A. & Kaur, T. 2020. Encapsulation of vancomycin in copper doped hydroxyapatite mesoporous nanoparticles of different morphologies. Journal of Drug Delivery Science and Technology 55: 101441.

Sinha, S., Garg, V., Singh, R.P. & Dutt, R. 2021. Chitosan-alginate core-shell-corona shaped nanoparticles of dimethyl fumarate in orodispersible film to improve bioavailability in treatment of multiple sclerosis: Preparation, characterization and biodistribution in rats. Journal of Drug Delivery Science and Technology 64: 102645.

Ta, Q., Ting, J., Harwood, S., Browning, N., Simm, A., Ross, K., Olier, I. & Al-Kassas, R. 2021. Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin. European Journal of Pharmaceutical Sciences 160: 105765.

Tiwari, N., Kumar, D., Priyadarshani, A., Jain, G.K., Mittal, G., Kesharwani, P. & Aggarwal, G. 2023. Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. Journal of Drug Delivery Science and Technology 82: 104319.

Tiwari, R. & Pathak, K. 2023. Local drug delivery strategies towards wound healing. Pharmaceutics 15(2): 634.

Tufail, S., Siddique, M.I., Sarfraz, M., Sohail, M.F., Shahid, M.N., Omer, M.O., Katas, H. & Rasool, F. 2022. Simvastatin nanoparticles loaded polymeric film as a potential strategy for diabetic wound healing: In vitro and in vivo evaluation. Current Drug Delivery 19(5): 534-546.

Wadher, K.J., Kubde, C.J., Malkote, S.D., Thakre, M.S., Shelote, C.J. & Umekar, M.J. 2023. Formulation and characterization of montelukast sodium mouth dissolving film using cress seed mucilage. Journal of Drug Delivery and Therapeutics 13(2): 16-20.

Wang, H., Gong, X., Miao, Y., Guo, X., Liu, C., Fan, Y-Y., Zhang, J., Niu, B. & Li, W. 2019. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chemistry 283: 397-403.

Wang, Y., Chen, G., Zhang, H., Zhao, C., Sun, L. & Zhao, Y. 2021. Emerging functional biomaterials as medical patches. ACS Nano 15(4): 5977-6007.

Xi, H., Cun, D., Xiang, R., Guan, Y., Zhang, Y., Li, Y. & Fang, L. 2013. Intra-articular drug delivery from an optimized topical patch containing teriflunomide and lornoxicam for rheumatoid arthritis treatment: Does the topical patch really enhance a local treatment? Journal of Controlled Release 169(1-2): 73-81.

Yao, Y., Sun, Z., Li, X., Tang, Z., Li, X., Morrell, J.J., Liu, Y., Li, C. & Luo, Z. 2022. Effects of raw material source on the properties of CMC composite films. Polymers 14(1): 32.

Yazdanpanah, L., Nasiri, M. & Adarvishi, S. 2015. Literature review on the management of diabetic foot ulcer. World Journal of Diabetes 6(1): 37.

Yong, D.O.C., Saker, S.R., Wadhwa, R., Chellappan, D.K., Madheswaran, T., Panneerselvam, J., Tambuwala, M.M., Bakshi, H.A., Kumar, P. & Pillay, V. 2019. Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment of asthma. Journal of Drug Delivery Science and Technology 54: 101297.

 

*Corresponding author; email: muhammad.siddique@nbu.edu.sa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous